Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Methods Mol Biol ; 2784: 163-176, 2024.
Article En | MEDLINE | ID: mdl-38502485

RNA fluorescence in situ hybridization (FISH) is a powerful method to determine the abundance and localization of mRNA molecules in cells. While modern RNA FISH techniques allow quantification at single molecule resolution, most methods are optimized for mammalian cell culture and are not easily applied to in vivo tissue settings. Single-molecule RNA detection in skeletal muscle cells has been particularly challenging due to the thickness and high autofluorescence of adult muscle tissue and a lack of in vitro models for mature muscle cells (myofibers). Here, we present a method for isolation of adult myofibers from mouse skeletal muscle and detection of single mRNA molecules and proteins using multiplexed RNA FISH and immunofluorescence.


Muscle Fibers, Skeletal , RNA , Mice , Animals , RNA/genetics , RNA/metabolism , In Situ Hybridization, Fluorescence/methods , Muscle Fibers, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fluorescent Antibody Technique , Muscle, Skeletal , Mammals
2.
Nat Commun ; 14(1): 3427, 2023 06 09.
Article En | MEDLINE | ID: mdl-37296096

RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.


Kinesins , Myotonic Dystrophy , Humans , Kinesins/genetics , Kinesins/metabolism , Alternative Splicing , RNA/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Elife ; 122023 04 28.
Article En | MEDLINE | ID: mdl-37114770

LINE-1 (L1) is the only autonomously active retrotransposon in the human genome, and accounts for 17% of the human genome. The L1 mRNA encodes two proteins, ORF1p and ORF2p, both essential for retrotransposition. ORF2p has reverse transcriptase and endonuclease activities, while ORF1p is a homotrimeric RNA-binding protein with poorly understood function. Here, we show that condensation of ORF1p is critical for L1 retrotransposition. Using a combination of biochemical reconstitution and live-cell imaging, we demonstrate that electrostatic interactions and trimer conformational dynamics together tune the properties of ORF1p assemblies to allow for efficient L1 ribonucleoprotein (RNP) complex formation in cells. Furthermore, we relate the dynamics of ORF1p assembly and RNP condensate material properties to the ability to complete the entire retrotransposon life-cycle. Mutations that prevented ORF1p condensation led to loss of retrotransposition activity, while orthogonal restoration of coiled-coil conformational flexibility rescued both condensation and retrotransposition. Based on these observations, we propose that dynamic ORF1p oligomerization on L1 RNA drives the formation of an L1 RNP condensate that is essential for retrotransposition.


Long Interspersed Nucleotide Elements , Retroelements , Humans , Retroelements/genetics , Long Interspersed Nucleotide Elements/genetics , Mutation , RNA-Binding Proteins/metabolism , RNA/metabolism
4.
J Physiol ; 601(4): 723-741, 2023 02.
Article En | MEDLINE | ID: mdl-36629254

Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.


Muscle Fibers, Skeletal , Muscle, Skeletal , Adult , Humans , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/physiology , Cell Nucleus/metabolism , RNA, Messenger/metabolism , Atrophy/metabolism , Atrophy/pathology
5.
Cell ; 185(24): 4465-4467, 2022 11 23.
Article En | MEDLINE | ID: mdl-36423576

Volume control is a fundamental challenge for all cells, the mechanisms of which have been long debated. In this issue of Cell, Boyd-Shiwarski et al. find that increased molecular crowding drives condensation of WNK kinase, allowing cells to sense and respond to cell volume loss.


Cell Size
6.
Nat Commun ; 12(1): 6079, 2021 10 27.
Article En | MEDLINE | ID: mdl-34707124

While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.


Microtubules/metabolism , Muscle, Skeletal/metabolism , RNA/metabolism , Animals , Biological Transport/drug effects , Cell Differentiation , Cell Nucleus/metabolism , Computer Simulation , Mice , Molecular Imaging , Muscle Development , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/growth & development , Neuromuscular Junction/metabolism , Nocodazole/pharmacology , Polymerization/drug effects , Protein Biosynthesis , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Ribosomes/metabolism , Sarcomeres/metabolism
7.
iScience ; 24(4): 102372, 2021 Apr 23.
Article En | MEDLINE | ID: mdl-33948557

Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required for appropriate ECM remodeling. Late-stage communication from myogenic cells during loading is widespread but may be targeted toward endothelial cells. Satellite cells coordinate adaptation by influencing the phenotype of recipient cells, which extends our understanding of their role in muscle adaptation beyond regeneration and myonuclear donation.

8.
Skelet Muscle ; 9(1): 17, 2019 06 07.
Article En | MEDLINE | ID: mdl-31174599

BACKGROUND: Skeletal muscle contributes to roughly 40% of lean body mass, and its loss contributes to morbidity and mortality in a variety of pathogenic conditions. Significant insights into muscle function have been made using cultured cells, in particular, the C2C12 myoblast line. However, differentiation of these cells in vitro typically yields immature myotubes relative to skeletal muscles in vivo. While many efforts have attempted to improve the maturity of cultured myotubes, including the use of bioengineered substrates, lack of molecular characterization has precluded their widespread implementation. This study characterizes morphological, molecular, and transcriptional features of C2C12 myotubes cultured on crosslinked, micropatterned gelatin substrates fabricated using previously established methods and compares them to myotubes grown on unpatterned gelatin or traditional plasticware. METHODS: We used immunocytochemistry, SDS-PAGE, and RNAseq to characterize C2C12 myotubes grown on micropatterned gelatin hydrogels, unpatterned gelatin hydrogels, and typical cell culture substrates (i.e., plastic or collagen-coated glass) across a differentiation time course. The ability to form aligned sarcomeres and myofilament protein concentration was assessed. Additionally, the transcriptome was analyzed across the differentiation time course. RESULTS: C2C12 myotubes grown on micropatterned gelatin hydrogels display an increased ability to form aligned sarcomeres as well as increased contractile protein content relative to myotubes cultured on unpatterned gelatin and plastic. Additionally, genes related to sarcomere formation and in vivo muscle maturation are upregulated in myotubes grown on micropatterned gelatin hydrogels relative to control myotubes. CONCLUSIONS: Our results suggest that growing C2C12 myotubes on micropatterned gelatin hydrogels accelerates sarcomere formation and yields a more fully matured myotube culture. Thus, the use of micropatterned hydrogels is a viable and simple approach to better model skeletal muscle biology in vitro.


Cell Culture Techniques/methods , Muscle Fibers, Skeletal/cytology , Animals , Cell Differentiation/genetics , Cell Line , Gelatin , Gene Expression Profiling , Hydrogels , Mice , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/metabolism , RNA-Seq , Surface Properties
9.
Mol Cell ; 68(3): 479-490.e5, 2017 Nov 02.
Article En | MEDLINE | ID: mdl-29056323

Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.


CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Endonucleases/metabolism , Genetic Therapy/methods , Microsatellite Repeats , Myotonic Dystrophy/therapy , Transcription, Genetic , Alternative Splicing , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , CD24 Antigen/genetics , CD24 Antigen/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Dependovirus/genetics , Disease Models, Animal , Down-Regulation , Enzyme Activation , Female , Genetic Vectors , HEK293 Cells , HeLa Cells , Humans , Male , Mice, Transgenic , Myoblasts/metabolism , Myoblasts/pathology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/pathology , RNA, Guide, Kinetoplastida/biosynthesis , RNA, Guide, Kinetoplastida/genetics , Transduction, Genetic , ran GTP-Binding Protein/genetics , ran GTP-Binding Protein/metabolism
...